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The stereocontrolled construction of acycéinti-1,3-carbon
stereogenic centers, includir@@-symmetrical fragments, repre-
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Table 1. Effect of Stabilizing Groups and Phosphite Additives on
Regioselectivity and Diastereospecificity witR){2a (R, = Me,
95% ee)

entry Nul(R,=Me)®  phosphite 2°:1° ds yield
E= additive (3+4):5P¢ 345 (%)

1 COMe (a) P(OMe), 721 181 73
2 CN @) P(OMe) 5:1 51 74
3 SOPh @) P(OMe) 1:2 15:1 95
4 COMe () P(OPh) 11 51 54
5 COMe (a) P(OEt); 9:1 151 79
6 COMe (a) P(OCHCF); 2111 161 91

a All reactions were carried out on a 0.2 mmol reaction scale at 30
°C in THF (0.07 M) with 1.5 equiv ofla—a" (93% ee) Ratios of
regio- and diastereoisomers were determined by capillary GLC on crude
reaction mixtures¢ The primary product$ were prepared indepen-

sents a fundamentally important process for target-directed gently ia Pd(0) catalysig. @ Isolated yields.

synthesis. Although a variety of excellent synthetic strategies

have been devised to address this problem, the ability to control Table 2. Scope of the Rhodium-Catalyzed Allylic Alkylation with
1,3-carbon stereogenic centers by using sequential enantiospecifiénantiomerically Enrichedi-Branched Malonate$a—c (93-99%

metal-catalyzed allylic substitution reactions withsymmetrical
acyclic chiral nonracemic secondary allylic alcohol derivatives
has not been addressed (eq?Ifhe metal-catalyzed allylic
substitution witha-substituted malonates has been examined;

however, symmetrical or stereoelectronically biased substrates are

required to circumvent poor regioselectivity.
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We envisioned that the rhodium-catalyzed allylic substitution
reaction would facilitate this type of linchpin cross-coupling
reaction owing to its propensity to undergo selective alkylation
through the formation of a distorted-allyl or enyl (¢ + x)

organorhodium intermediate’ Herein, we now describe the

sequential regioselective and enantiospecific rhodium-catalyzed

allylic alkylation of unsymmetricalacyclic chiral nonracemic
allylic carbonates and iii with the sodium salt of dimethyl
malonate ii for the construction of acyclicanti- and Cy-
symmetricall,3-carbon stereogenic centérgeq 1, R = R, and
Rl = Rz)

Preliminary studies examined the feasibility of the sequential
regioselective and enantiospecific metal-catalyzed allylic alky-

lation, with a series of stabilized carbon nucleophiles, to determine

the optimum linchpin (eq 2, Table %f¢ Treatment of the
secondary carbonat®)-2a with the sodium salt of the enantio-
merically enrichedo-substituted malonatesa—a’ under our
standard allylic alkylation conditions furnished the alkylation
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ee)
entry malonatd (E= carbonate, 2°:1° ds yield
COMe), R, =2 R, = (3+4):5° 34 (%)
1 Me @ Me @° a 211 16:1 91
2 Me @ Ph b)) b 81 7:1 86
3 Me @ BnOCH(c) ¢ 1=99¥ ND 81
4 Ph b) Me @ d 351 30:1 91
5 Ph b) Ph b) e 81 39:1 88
6 Ph ) BnOCH(c) f 1:29¢ ND 79
7 BnOCH (c) Me @@ g 471 10:1 90
8 BnOCH: (c) Ph ) h 61 3:* 83
9 BnOCH (c) BnOCH(c) i 1:21® ND 82

a All reactions were carried out on a 0.2 mmol reaction scale at 30
°C in THF (0.07 M) with 1.5 equiv ofl. P Ratios of regio- and
diastereoisomers were determined by capillary Gt.[Solated yields.
4>99:1 in favor of the E)-isomer by capillary GLC¢ Determined by
400 MHz *H NMR.

products3—5a—a’" in 73—95% yield (entries £3). The dimethyl
malonate derivativda (E = CO,Me, 93% ee) proved optimum

R B,
\/k(COZMe + MeOZCO/\/
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in terms of selectivity and its convenience for stereochemical
analysis. Additional studies focused on the effect of the tri-
organophosphite additive. This study demonstrated that increasing
both the cone angle andacidity leads to diminished selectivity
(entry 1 vs 4¥2 while significantly increasingz-acidity, with
trifluoroethyl phosphité® led to optimum regioselectivity (entry
5 vs 6). The improved regioselectivity was tentatively attributed
to the increased electrophilicity of the metalllyl intermediate,
thereby electronically promoting alkylation at the more substituted
terminus of the allyl fragmer?t®

Table 2 summarizes the examination of the scope of this metal-
catalyzed allylic alkylation reaction, under the optimized reaction
conditions (Table 1, entry 6), in which a predictive model is
evident for the optimum nucleophile/electrophile combination (eq
2, E= CO:Me). Interestingly, this study demonstrated that the

(8) (@) Tolman, C. A.Chem. Re. 1977, 77, 313. (b) Shreeve, J. M.;
Williamson, S. M.Organometallics1984 3, 1104.
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Table 3. Probing Nucleophile/Electrophile Stereochemical Scheme 1
Implications on Selectivity e i, NaH. THF _—
Ph . NaH. THF Ph Me Ph Me x copMe 1 ROPPCL N
x CO.Me ii. Rh(Phs)Cl ¥ H Z LN = COsMe P(OCH2CF1)3 MeO,C CO,Me
CoMe  POCHCE)  Me0,C COMe MeO,C COMe la (R)-Za,’-IO c 3a
1b 2a 3d 4d 1%
- KCN, DMSO
entry malonate carbonate 2°:1° ds %ee yield 9B%| |40 C
1b? (29) (3d+4d):5d® 3d:4d® of 3d° (%)
1 (R)- (R- 35:1 30:1 =90 91 Me  Me Ve Me
2 R- - 8:1 21 60! 72 | Vi, 2NHCO (L A
3 (R)- (RS- 17:1 61 =90 89 b CH,Cl, RT o
4 (RS- (R9- 27:1 18:1 0o 87 70 $4% p
5 (RS- (R- 30:1 191 60 88

a All reactions were carried out on a 0.2 mmol reaction scale at 30 the degree of racemization of the metallyl intermediate.
°C with 1.5 equiv oflb. ® Ratios of regio- and diastereoisomers were Treatment of the allylic carbonatéR)-2a (95% ee) with the
determined by capillary GLC:.Enantiomeric excess was determined sodium salt of the racemiz-branched malonat&®§-1b furnished
by 400 MHz*H NMR using the shift reagentt)-Eu(tfck. ¢ Isolated the 1,3-alkylation adduc®d/4d, favoring3d albeit with reduced
yields.*The alkylation reaction was carried out with 3 equiv1df. enantiomeric excess (entry 5). Hence, the erosion of enantiospeci-

ficity is consistent with a more fluxional organorhodium inter-

relative size of thet-branched malonate has a marginal influence  mediate, which is contrary to our earlier investigatiéns.
on regioselectiity (entries 1, 4, and 7), whereas the nature of  C,-symmetrical fragments provide versatile synthons for the
the secondary allylic carbonate imparts significant control on  construction of complex stereochemical arrays (vide supra). We
th.is parameter (entries-13). For example, the allylic alkylation envisioned that the desymmetrization 6f-symmetrical 1,3-
with phenyl and benzyloxymethy! allylic carbona®s(97% ee) carbon stereogenic centers would provide an expeditious route
and2c (=99% ee) leads to diminished (entries 2, 5, and 8) and to stereotetradsInitial studies focused on improving the selectiv-
complete reversal in regioselectivity, respectively (entries 3, 6, ity in the formation of3a by lowering the reaction temperature.
and 9) The ab|||ty to Completely alter the mode of alkylation in Treatment of the Secondary Carbonaﬁ.za (95% ee) with the
the latter example was attributed to the proximal ligation of the godium salt ofla (93% ee) under the rhodium-catalyzed allylic
benzyloxymethyl substituent with the more electrophilic metal  alkylation reaction conditions at10°C furnished the alkylation
allyl intermediate, which is presumably a function of the increased product3ain 91% yield, with improved selectivity2(:1° = 24:
w-acidity of the fluorophosphite’¥.Nonetheless, this provides a  1: ds = 26:1: cf. Table 1, entry 6). Krapcho decarboxylation/
Synthetica”y useful method for the construction Ei)—()rimary Saponification of the diesteBa furnished the pseudecz_
a”yllC ethers. The diaStel’eospeCiﬁCity follows a similar trend to symmetrica| Carboxylic aci®, which was then desymmetrized
the regioselectivity, albeit with the exception db (Entries 4 with iodine to furnish the iodolacton@ in 84% vyield (s >
and 5). Overall, this investigation provides a predictive model 30:1)1212
for achieving the optimum selectivity in a specific cross-coupling  |n conclusion, we have developed a new allylic linchpin cross-
reaction (.e., entry 2vs 4; in which 3b = 3d for this study). coupling reaction for the construction aiti- andC,-symmetrical

The diastereospecificity obtained witR)¢2a (Table 3, entry 1 3-carbon stereogenic centers through sequential enantiospecific
1) prompted the examination of the enantiomeric carbor@te ( and regioselective rhodium-catalyzed allylic substitution reactions.

2a(96% ee), which was expected to furnish Syeisomer4d, This study provided evidence for a more fluxional organorhodium
and thus establish whether the reaction has a mismatchedintermediate, which is clearly matched for the formation of the
component. Surprisingly, the allylic alkylation of §-2a with anti-diastereoisomer, while somewhat mismatched for the alterna-
(R)-1b furnished theanti-diastereoisome8d, albeit with dimin- tive diastereoisomer. Finally, this approach provides an expedi-

ished selectivity (entry 2): The ability to reverse the selectivity  tious route topseudeC,-symmetrical fragments that can be

in this manner prompted the examination of the racemic carbonatedesymmetrized into important synthons for target-directed syn-
(R9-2a, which was anticipated to facilitate a more diastereo- thesis.
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(9) The alkylation of R)-1a with (§)-2a furnished themeseproduct4 in JA005689M
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(10) For an excellent review on substrate-directable chemical reactions, (12) (a) Krapcho, A. PSynthesis982 805. (b) Kurth, M. J.; Brown, E.

see: Hoveyda, A. H.; Evans, D. A.; Fu, G. Chem. Re. 1993 93, 1307. G.; Lewis, E. J.; McKew, J. CTetrahedron Lett1988 29, 1517.
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